第1篇 初中數(shù)學(xué)直角三角形的幾何知識(shí)點(diǎn)總結(jié) 450字
初中數(shù)學(xué)直角三角形的幾何知識(shí)點(diǎn)總結(jié)
直角三角形是一種特殊的三角形,它除了具有一般三角形的性質(zhì)外,具有一些特殊的性質(zhì)。
直角三角形
定義
有一個(gè)角為90°的三角形,叫做直角三角形(rt三角形)。
性質(zhì)
性質(zhì)1:直角三角形兩直角邊的平方和等于斜邊的平方。如圖,∠bac=90°,則ab+ac=bc(勾股定理)
性質(zhì)2:在直角三角形中,兩個(gè)銳角互余。如圖,若∠bac=90°,則∠b+∠c=90°
性質(zhì)3:在直角三角形中,斜邊上的中線等于斜邊的一半(即直角三角形的外心位于斜邊的中點(diǎn),外接圓半徑r=c/2)。
性質(zhì)4:直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的'乘積。
性質(zhì)5:如圖,rt△abc中,∠bac=90°,ad是斜邊bc上的高,則有射影定理如下:
(1)(ad)=bd·dc。
(2)(ab)=bd·bc。
(3)(ac)=cd·bc。
性質(zhì)6:在直角三角形中,如果有一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。
在直角三角形中,如果有一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30°。
性質(zhì)7:如圖,1/ab2+1/ac2=1/ad2
性質(zhì)8:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似。
在直角三角形中有一個(gè)重要的知識(shí)點(diǎn)就是勾股定理,是常用到的知識(shí)。
第2篇 初中數(shù)學(xué)直角三角形定理公式總結(jié) 650字
初中數(shù)學(xué)直角三角形定理公式總結(jié)
直角三角形的性質(zhì):
①直角三角形的兩個(gè)銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對(duì)的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個(gè)角互余的三角形是直角三角形;
②如果三角形的`三邊長a、b 、c有下面關(guān)系a^2+b^2=c^2
,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。
以上對(duì)數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式
下面是對(duì)等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認(rèn)真看看。
等腰三角形的性質(zhì):
①等腰三角形的兩個(gè)底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對(duì)等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們?cè)诳荚囍腥〉煤芎玫某煽儭?/p>
初中數(shù)學(xué)三角形定理公式
對(duì)于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
第3篇 初中數(shù)學(xué)直角三角形的性質(zhì)知識(shí)點(diǎn)總結(jié) 450字
初中數(shù)學(xué)直角三角形的性質(zhì)知識(shí)點(diǎn)總結(jié)
直角三角形知識(shí):顧名思義,有一個(gè)角為90°的三角形,叫做直角三角形。
直角三角形性質(zhì)定理
直角三角形是一種特殊的三角形,它除了具有一般三角形的性質(zhì)外,具有一些特殊的性質(zhì):
性質(zhì)1:直角三角形兩直角邊的平方和等于斜邊的平方。如圖,∠bac=90°,則ab+ac=bc(勾股定理)
性質(zhì)2:在直角三角形中,兩個(gè)銳角互余。如圖,若∠bac=90°,則∠b+∠c=90°
性質(zhì)3:在直角三角形中,斜邊上的`中線等于斜邊的一半(即直角三角形的外心位于斜邊的中點(diǎn),外接圓半徑r=c/2)。
性質(zhì)4:直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。
射影定理如下:
(1)(ad)=bd·dc。
(2)(ab)=bd·bc。
(3)(ac)=cd·bc。
性質(zhì)6:在直角三角形中,如果有一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。
在直角三角形中,如果有一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30°。
性質(zhì)7:1/ab2+1/ac2=1/ad2
性質(zhì)8:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似。
知識(shí)延伸:兩個(gè)銳角互余的三角形是直角三角形。