第1篇 初中數(shù)學的公式總結 800字
初中數(shù)學的公式總結
線段定理公式知識
線段定理:
線段垂直平分線上的點和這條線段兩個端點的距離相等
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
平行四邊形定理公式
平行四邊形
平行四邊形的性質:
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
直角三角形定理公式
直角三角形的性質:
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質定理公式
等腰三角形的性質:
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
三角形定理公式
三角形
三角形的.三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內角和定理:三角形的三個內角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;
三角形的三條角平分線交于一點(內心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
第2篇 初中數(shù)學備課組長工作總結 1150字
我們數(shù)學備課組在本學年繼續(xù)認真學習學科新課程標準,將新課改的理念滲透到數(shù)學教學中,認真研究教材教法、學生學法,較為圓滿地完成了數(shù)學教學工作,下面總結一下工作情況。
(一)、堅持不懈地抓好教學常規(guī)管理
抓課堂教學,在課堂上要準確無誤地把知識傳授給學生;采用靈活多變富用啟迪性的教育法;課堂結構在優(yōu)化上求效益;用條理清楚的語言表達,利用多媒體來輔助教學,激起學生學習興趣,學生積極活動,師生形成合力,取得最大的教學效果。
抓備課,課前認真分析、研究教材的知識點、重點、難點,把要引導的內容和過程統(tǒng)籌設計,哪怕在上課時所做的設計和實際不一定相吻合老師們也認真設計好,因為這是教學有的放矢的第一步。課上的巡回指導和個別提問雖然會感到勞累,但是,老師們也切實用心地去做。課下的輔導和作業(yè)老師們更能悉心指導、積極奉獻。能做到在個人備課的基礎上,堅持備課組集體研究;在抓好教學環(huán)節(jié)的基礎上,堅持集體備課,相互交流,相互探討,認真?zhèn)浜妹恳还?jié)課,課組活動確實有效、抓住關鍵、提綱挈領、啟發(fā)引導、有助于各位教師設計好每節(jié)課,使之在教材處理、教法優(yōu)選、課堂把握、差生指導、教學美化等方面做得更好。
(二)、關于考試和練習
在平常教學中,我們堅持“堂堂清”、“日日清”、“周周清”。 “堂堂清”、“日日清”、“周周清”是相互促進、密不可分的一個整體?!疤锰们濉笔腔A,“日日清”是必不可少的一個補救措施,“周周清”是“堂堂清”、“日日清”的保障,有了“周周清”,才能促進學生努力去“堂堂清”、“日日清”,現(xiàn)在,“三清”已成為我校的一種學習習慣。
(三)、重視抓差,落實“三清”
本學期本著“每一個學生都能學好”、“每一個學生都能合格”的信念,努力營造尊重學生、關心學生、主動為學生服務的育人氛圍。深入學生、了解學生、研究學生,幫助每一個學生健康成長,不忽視學生的每一個閃光點,也不放過每一學生的弱點,不讓一個學生掉隊。在教學中學校普遍采用了“先學后教,當堂訓練”的課堂教學結構,所謂“先學”就是讓學生自主學習。所謂“后教”,就是指學生合作學習,會的學生教不會的學生,最后教師點撥,從而解決“差生”存在的問題。課堂教師提問、做練習,都由“差生”打頭陣,讓“差生”的問題在課堂上得到最大限度的暴露,便于師生有針對性的輔導。這樣,既讓優(yōu)等生能力強了,又讓“差生”基本解決了自己的疑難問題。同時,教師課后輔導的主要對象也是“差生”,交流談心最多的也是“差生”, 由于全組老師的辛勤耕耘,使所有學生都在原有基礎上取得了長足的進步。
(四)、根據(jù)學校要求,做好日常工作
我們備課組活動每周一次,每次活動定時間、定內容、定中心發(fā)言人,并將每次活動精神落到實處。認真對教學常規(guī)進行檢查,本學期對教師的備課情況進行了細致檢查,不定期地檢查課堂教學情況、作業(yè)批改反饋情況等。另外,我們還認真組織聽課活動,包括校內和校外的公開課和講座,通過學習與探討,有力的提高了我們的教學水平。
第3篇 初中數(shù)學知識點總結之近似數(shù)的內容 1750字
初中數(shù)學知識點總結之近似數(shù)的內容
初中數(shù)學知識點總結之近似數(shù)
同學們一起來學習關于近似數(shù)的知識點總結。
近似數(shù)
一個近似數(shù),從左邊笫一個不是0的數(shù)字起,到最末一個數(shù)字止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.如:0.05972精確到0.001得0.060,結果有兩個有效數(shù)字6,0.
通過上面對近似數(shù)知識點的總結,希望能很好的幫助同學對知識點的學習和掌握。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的`結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
第4篇 初中數(shù)學二次根式的知識點總結 350字
關于初中數(shù)學二次根式的知識點總結
知識點總結
二次根式的應用主要體現(xiàn)在兩個方面:1.利用從特殊到一般,在由一般到特殊的重要思想方法,解決一些規(guī)律探索性問題;2.利用二次根式解決長度、高度計算問題,根據(jù)已知量,求出一些長度或高度,或設計省料的方案,以及圖形的拼接、分割問題。這個過程需要用到二次根式的計算,其實就是化簡求值。
常見考法
(1)設計一些規(guī)律探索問題提高學生的`想象力和創(chuàng)造力;(2)聯(lián)系生活實際設計一些方案探究題。
誤區(qū)提醒
(1)不能通過觀察,歸納、猜想尋找出共同的規(guī)律,并運用這種規(guī)律解決問題;
(2)不會應用數(shù)學的知識解決實際生活中的問題。
典型例題小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁出一塊面積為300cm2的長方形紙片,使它的長、寬比為3:2,不知道能否裁出來,正在發(fā)愁你能幫他解決嗎?
第5篇 初中數(shù)學典型知識點總結 3000字
初中數(shù)學典型知識點總結
一、基本知識
㈠、數(shù)與代數(shù)
a、數(shù)與式:
1、有理數(shù)
有理數(shù):
①整數(shù)→正整數(shù)/0/負整數(shù)
②分數(shù)→正分數(shù)/負分數(shù)
數(shù)軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。
④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:
①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:
①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:
①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求n個相同因數(shù)a的積的運算叫做乘方,乘方的結果叫冪,a叫底數(shù),n叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
①如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術平方根。
②如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。
③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)a的平方根運算,叫做開平方,其中a叫做被開方數(shù)。
立方根:
①如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。
③求一個數(shù)a的立方根的運算叫開立方,其中a叫做被開方數(shù)。
實數(shù):
①實數(shù)分有理數(shù)和無理數(shù)。
②在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:
①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。
②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:
①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
b、方程與不等式
1、方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關系
大家已經學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與x軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解。
配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。
分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根x1={-b+√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a公式法。
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c。
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a。
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
i當△>;0時,一元二次方程有2個不相等的實數(shù)根;
ii當△=0時,一元二次方程有2個相同的實數(shù)根;
iii當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)
2、不等式與不等式組
不等式:
①用符號〉,=,〈號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:a>;b,a+c>;b+c
在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:a>;b,a-c>;b-c
在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:a>;b,a*c>;b*c(c>;0)
在不等式中,如果乘以同一個負數(shù),不等號改向;例如:a>;b,a*c<0)
如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
3、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
一次函數(shù):①若兩個變量x,y間的關系式可以表示成y=kx+b(b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)。②當b=0時,稱y是x的正比例函數(shù)。
一次函數(shù)的圖象:
①把一個函數(shù)的自變量x與對應的因變量y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)y=kx的圖象是經過原點的一條直線。
③在一次函數(shù)中,當k〈0,b〈o,則經234象限;當k〈0,b〉0時,則經124象限;當k〉0,b〈0時,則經134象限;當k〉0,b〉0時,則經123象限。
④當k〉0時,y的值隨x值的增大而增大,當x〈0時,y的值隨x值的增大而減少。
㈡空間與圖形
a、圖形的認識
1、點,線,面
點,線,面:
①圖形是由點,線,面構成的。
②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。
②n棱柱就是底面圖形有n條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2、角、線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
②將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內,不相交的兩條直線叫做平行線。
②經過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的'兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質定理:正方形具有平行四邊形、菱形、矩形的一切性質
判定定理:1、對角線相等的菱形;2、鄰邊相等的矩形
3、相交線與平行線
角:
①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。
②同角或等角的余角/補角相等。
③對頂角相等。
④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。
4、三角形
①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
③三角形任意兩邊之和大于第三邊。三角形任意兩邊之差小于第三邊。
④三角形三個內角的和等于180度。
⑤三角形分銳角三角形/直角三角形/鈍角三角形。
⑥直角三角形的兩個銳角互余。
⑥三角形中一個內角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。⑦三角形中,連接一個頂點與他對邊中點的線段叫做這個三角形的中線。
⑧三角形的三條角平分線交于一點,三條中線交于一點。
⑨從三角形的一個頂點向他的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高。
⑩三角形的三條高所在的直線交于一點。
圖形的全等:全等圖形的形狀和大小都相同。兩個能夠重合的圖形叫全等圖形。
全等三角形:
①全等三角形的對應邊/角相等。
②條件:sss、aas、asa、sas、hl。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。
5、四邊形
平行四邊形的性質:
①兩組對邊分別平行的四邊形叫做平行四邊形。
②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③平行四邊形的對邊/對角相等。④平行四邊形的對角線互相平分。
平行四邊形的判定條件:兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩組對邊分別相等的四邊形/定義。
菱形:
①一組鄰邊相等的平行四邊形是菱形。
②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
①有一個內角是直角的平行四邊形叫做矩形。
②矩形的對角線相等,四個角都是直角。
③對角線相等的平行四邊形是矩形。
④正方形具有平行四邊形,矩形,菱形的一切性質。⑤一組鄰邊相等的矩形是正方形。
梯形:
①一組對邊平行而另一組對邊不平行的四邊形叫梯形。
②兩條腰相等的梯形叫等腰梯形。
③一條腰和底垂直的梯形叫做直角梯形。
④等腰梯形同一底上的兩個內角相等,對角線星等,反之亦然。
多邊形:
①n邊形的內角和等于(n-2)180度。
②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等于360度)
平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。
中心對稱圖形:
①在平面內,一個圖形繞某個點旋轉180度,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。
②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
b、圖形與變換:
1、圖形的軸對稱
軸對稱:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
軸對稱圖形:
①角的平分線上的點到這個角的兩邊的距離相等。
②線段垂直平分線上的點到這條線段兩個端點的距離相等。
③等腰三角形的“三線合一”。
軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。
2、圖形的平移和旋轉
平移:
①在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等。
旋轉:
①在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
②經過旋轉,圖形商店每一個點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
3、圖形的相似
比:①a/b=c/d,那么ad=bc,反之亦然。②a/b=c/d,那么a土b/b=c土d/d。③a/b=c/d=。。。=m/n,那么a+c+…+m/b+d+…n=a/b。
黃金分割:點c把線段ab分成兩條線段ac與bc,如果ac/ab=bc/ac,那么稱線段ab被點c黃金分割,點c叫做線段ab的黃金分割點,ac與ab的比叫做黃金比(根號5-1/2)。
相似:
①各角對應相等,各邊對應成比例的兩個多邊形叫做相似多邊形。
②相似多邊形對應邊的比叫做相似比。
相似三角形:
①三角對應相等,三邊對應成比例的兩個三角形叫做相似三角形。②條件:aaa、sss、sas。
相似多邊形的性質:
①相似三角形對應高,對應角平分線,對應中線的比都等于相似比。
②相似多邊形的周長比等于相似比,面積比等于相似比的平方。
圖形的放大與縮?。?/p>
①如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比。
②位似圖形上任意一對對應點到位似中心的距離之比等于位似比。
c、圖形的坐標
平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸與y軸統(tǒng)稱坐標軸,他們的公共原點o稱為直角坐標系的原點。他們分4個象限。xa,yb記作(a,b)。
d、證明
定義與命題:
①對名稱與術語的含義加以描述,作出明確的規(guī)定,也就是給出他們的定義。
②對事情進行判斷的句子叫做命題(分真命題與假命題)。
③每個命題是由條件和結論兩部分組成。
④要說明一個命題是假命題,通常舉出一個離子,使之具備命題的條件,而不具有命題的結論,這種例子叫做反例。
公理:
①公認的真命題叫做公理。
②其他真命題的正確性都通過推理的方法證實,經過證明的真命題稱為定理。
③同位角相等,兩直線平行,反之亦然;sas、asa、sss,反之亦然;同旁內角互補,兩直線平行,反之亦然;內錯角相等,兩直線平行,反之亦然;三角形三個內角的和等于180度;三角形的一個外交等于和他不相鄰的兩個內角的和;三角心的一個外角大于任何一個和他不相鄰的內角。
④由一個公理或定理直接推出的定理,叫做這個公理或定理的推論。
㈢統(tǒng)計與概率
1、統(tǒng)計
科學記數(shù)法:一個大于10的數(shù)可以表示成a*10n的形式,其中1小于等于a小于10,n是正整數(shù)。
扇形統(tǒng)計圖:
①用圓表示總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。
②扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數(shù)與360度的比。
各類統(tǒng)計圖的優(yōu)劣:條形統(tǒng)計圖:能清楚表示出每個項目的具體數(shù)目;折線統(tǒng)計圖:能清楚反映事物的變化情況;扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
近似數(shù)字和有效數(shù)字:
①測量的結果都是近似的。
②利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。
③對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個數(shù)的有效數(shù)字。
平均數(shù):對于n個數(shù)x1,x2…xn,我們把(x1+x2+…+xn)/n叫做這個n個數(shù)的算術平均數(shù),記為x(上邊一橫)。
加權平均數(shù):一組數(shù)據(jù)里各個數(shù)據(jù)的重要程度未必相同,因而,在計算這組數(shù)據(jù)的平均數(shù)時往往給每個數(shù)據(jù)加一個權,這就是加權平均數(shù)。
中位數(shù)與眾數(shù):
①n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
②一組數(shù)據(jù)中出現(xiàn)次數(shù)最大的那個數(shù)據(jù)叫做這個組數(shù)據(jù)的眾數(shù)。
③優(yōu)劣:平均數(shù):所有數(shù)據(jù)參加運算,能充分利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中常用,但容易受極端值影響;中位數(shù):計算簡單,受極端值影響少,但不能充分利用所有數(shù)據(jù)的信息;眾數(shù):各個數(shù)據(jù)如果重復次數(shù)大致相等時,眾數(shù)往往沒有特別的意義。
調查
:①為了一定的目的而對考察對象進行的全面調查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
②從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
③抽樣調查只考察總體中的一小部分個體,因此他的優(yōu)點是調查范圍小,節(jié)省時間,人力,物力和財力,但其調查結果往往不如普查得到的結果準確。為了獲得較為準確的調查結果,抽樣時要主要樣本的代表性和廣泛性。
頻數(shù)與頻率:
①每個對象出現(xiàn)的次數(shù)為頻數(shù),而每個對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。
②當收集的數(shù)據(jù)連續(xù)取值時,我們通常先將數(shù)據(jù)適當分組,然后再繪制頻數(shù)分布直方圖。
2、概率
可能性:
①有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。
②有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。
③一般來說,不確定事件發(fā)生的可能性是有大小的。
概率:
①人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。
②游戲對雙方公平是指雙方獲勝的可能性相同。
③必然事件發(fā)生的概率為1,記作p(必然事件)=1;不可能事件發(fā)生的概率為0,記作p(不可能事件)=0;如果a為不確定事件,那么0〈p(a)〈1。
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個內角的和等于180°
18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24、推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(sss)有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1關于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質定理1平行四邊形的對角相等
53、平行四邊形性質定理2平行四邊形的對邊相等
54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1矩形的四個角都是直角
61、矩形性質定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形
63、矩形判定定理2對角線相等的平行四邊形是矩形
64、菱形性質定理1菱形的四條邊都相等
65、菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即s=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1關于中心對稱的兩個圖形是全等的
72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半l=(a+b)÷2 s=l×h
83、(1)比例的基本性質:
如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1兩角對應相等,兩三角形相似(asa)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(sas)
94、判定定理3三邊對應成比例,兩三角形相似(sss)
95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2相似三角形周長的比等于相似比
98、性質定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
121、①直線l和⊙o相交d﹤r
②直線l和⊙o相切d=r
③直線l和⊙o相離d﹥r
122、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理圓的切線垂直于經過切點的半徑
124、推論1經過圓心且垂直于切線的直線必經過切點
125、推論2經過切點且垂直于切線的直線必經過圓心
126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離d﹥r+r
②兩圓外切d=r+r
③兩圓相交r-r﹤d﹤r+r(r﹥r)
④兩圓內切d=r-r(r﹥r)
⑤兩圓內含d﹤r-r(r﹥r)
136、定理相交兩圓的連心線垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:l=n兀r/180
145、扇形面積公式:s扇形=n兀r^2/360=lr/2
146、內公切線長=d-(r-r)外公切線長=d-(r+r)
三、常用數(shù)學公式
公式分類公式表達式
乘法與因式分解a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>;-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根與系數(shù)的關系x1+x2=-b/a
x1*x2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>;0注:方程有兩個不等的實根
b2-4ac<0注:方程沒有實根,有共軛復數(shù)根
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sina=b/sinb=c/sinc=2r
注:其中r表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosb
注:角b是邊a和邊c的夾角
四、基本方法
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
6、構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據(jù)一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結論排除,余下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
第6篇 初中數(shù)學同位角的公式性質總結 1350字
初中數(shù)學同位角的公式性質總結
初中數(shù)學同位角的公式性質
同位角的公式性質是在兩條平行線和一條斜截線中出現(xiàn)的重要性質定理,是考試常涉及到的知識。
同位角公式性質
平行線的性質:兩直線平行,同位角相等。
平行線的判定:同位角相等,兩直線平行。
不管什么樣的公式性質理解,前提都是對該公式的熟知,同位角也不例外。
初中數(shù)學正方形定理公式
關于正方形定理公式的內容精講知識,希望同學們很好的掌握下面的內容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內容講解。
平行四邊形
平行四邊形的性質:
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的內容講解,希望給同學們的學習很好的幫助。
直角三角形的性質:
①直角三角形的.兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質定理公式
下面是對等腰三角形的性質定理公式的內容學習,希望同學們認真看看。
等腰三角形的性質:
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內容講解學習哦。
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內角和定理:三角形的三個內角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;
三角形的三條角平分線交于一點(內心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內容講解學習,希望同學們都能很好的掌握,并在考試中取得很好的成績哦。
第7篇 學好初中數(shù)學的方法總結 950字
學好初中數(shù)學的方法總結
一、認真安排時間。首先你要清楚一周內所要做的事情,然后制定一張作息時間表。在表上填上那些非花不可的時間,如吃飯、睡覺、上課、娛樂等。安排這些時間之后,選定合適的、固定的時間用于學習,必須留出足夠的時間來完成 正常的閱讀和課后作業(yè)。當然,學習不應該占據(jù)作息時間表上全部的空閑時間,總得給休息、業(yè)余愛好、娛樂留出一些時間,這一點對學習很重要。一張作息時間表也許不能解決你所有的問題,但是它能讓你了解如何支配你這一周的 時間,從而使你有充足的時間學習和娛樂。
二、學前預習。這就意味著在你認真投入學習之前,先把要學習的內容快速瀏覽一遍,了解學習的大致內容及結構,以便能及時理解和消化學習內容。當然,你要注意輕重詳略,在不太重要的地方你可以花少點時間,在重要的地方,你可以稍微放慢學習進程。
三、充分利用課堂時間。學習成績好的學生很大程度上得益于在課堂上充分利用時間,這也意味著在課后少花些功夫。課堂上要及時配合老師,做好筆記來幫助自己記住老師講授的內容,尤其重要的是要積極地獨立思考,跟得上老師的思維。
四、學習要有合理的規(guī)律。課堂上做的筆記要在課后及時回顧,不僅要復習老師在課堂上講授的重要內容,還要復習那些你仍感模糊的認識。如果你堅持定期復習筆記和課本,并做一些相關的習題,你定能更深刻地理解這些內容,你的記憶也會保持更久。
五、找一個安靜、舒適的地方學習。選擇某個地方做你學習之處,這一點很重要。它可以是你的`單間書房或教室或圖書館,但它必須是舒適、安靜的。當你開始學習時,你應該全神貫注于你的功課。
六、不能情緒波動的時候學習??茖W研究表明,在學習數(shù)學等理工學科的時候注意力非常難集中,所以在學習之前絕對不能有和同學爭吵,或者興奮的劇烈運動等等情緒。否則一時間無法集中注意力而無法進入學習狀態(tài)。所以在學習之前要平靜心態(tài),集中注意力,才可以達到事半功倍的效果。
七、樹立正確的考試觀。平時測驗的目的主要看你掌握功課程度如何,所以你不要弄虛作假,而應心平氣和地對待它?;蛟S,你有一兩次考試成績不盡如人意,但是這不要緊,只要學習扎實,認真對待,下一次一定會考出好成績來。通過測驗,可讓你了解下一步學習更需要用功夫的地方,更有助于你把新學的知識記得牢固。
第8篇 初中數(shù)學一次函數(shù)知識點總結 500字
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)
二、一次函數(shù)的性質:
1.y的變化值與對應的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實數(shù) b取任何實數(shù))
2.當x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質:
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質:(1)在一次函數(shù)上的任意一點p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
第9篇 初中數(shù)學研究型教師培訓總結 4100字
初中數(shù)學研究型教師培訓總結
20xx年9月7日至25日,我有幸參加了由保定學院承擔的河北省省初中數(shù)學骨干教師培訓。這次培訓對于自己收益很大,培訓時間安排合理緊湊,老師們講課精彩,教學內容豐富多彩。這次培訓給我們提供了一個再學習、再提高的機會,讓我們能聚集在一起相互交流,共同學習,取長補短,共同提高。通過這次培訓,收獲很多,眼界開闊了,思考問題能站在更高的境界,許多疑問得到了解決或者啟發(fā)。我們不僅學到了豐富的知識,進一步提高了業(yè)務素質。現(xiàn)總結如下:
一、更新了教育教學觀念,以新觀念指導教學
時代在不斷進步,社會在不停前行。同樣,教育教學理念也應與時俱進。特別是隨著新課程改革的縱深發(fā)展,很多教育教學中的深層次問題不斷地暴露,這時候更需要理論的指示與專家的引領。對于我個人而言,這次培訓無疑是一場;及時雨;,不僅對理清新課改中的種種關系有幫助,而且對突破新時代教育教學中一些;瓶頸; 問題提供新的解決思路與方法。
首都師大博導、新課標研制組組長王尚志教授的《整體把握新課程下的初中數(shù)學》的專題報告。他細致的分析了新課改的一些重大變化,如有原來常提的雙基改為了四基,兩種能力也增為四種能力,這些都對一線教師產生了深深的觸動,并對一線教師提出了新的要求。如何在教學中落實成為新時期一線數(shù)學教師所面臨的問題,同時也提出了初中數(shù)學教學不要僅僅局限于數(shù)學課堂,要提高各方面知識和能力。
二、更新了教育教學知識,結合新知識服務教學
教師要知識的更新與教學藝術的更新。作為數(shù)學老師,他應是始終站在科學知識岸邊的擺渡人,傳承知識與文化;他應是學生靈魂的塑造師與精神垃圾的清道夫。所以,作為數(shù)學教師必須時時保持充電的狀態(tài),此次培訓無疑是一次良好的機會。經過培訓,就我個人而言,不僅在學科知識方面得到一次全面的補充,而且在教學藝術方面得一次新的補充。
人民教育出版社中學數(shù)學室主任、課程教材研究所研究員章建躍博士《有效改進課堂教學》的專題報告,對初中數(shù)學的教學目標,課堂設計進行了深入的闡釋,提出這是聚焦課堂的教學研究的最直接的方式方法。保定市數(shù)學教研員徐建樂老師《進一步理解新課程下的教與學》,保定市新市區(qū)數(shù)學教研員王衛(wèi)國老師《數(shù)學復習課設計的實踐與思考》等專題報告都從具體教學設計、教師教學、學生學習的方面對初中學學教學從不同方面進行了細致分析和講解。同時強調現(xiàn)在的教師需要有反思精神,需要掌握教育學知識,才能成長為學生喜歡的教師。
總之,教育是一門藝術,需要老師不斷的自己更新,才能更上一層樓。
三、觀摩了名師教育教學,合理吸收利用于教學
此次培訓活動的一大特色就是理論聯(lián)系實際。不僅聆聽了專家的解讀,而且近距離地學習了名師的教育教學藝術和班級管理藝術。
保定三中章魏老師的《把握數(shù)學本質,打造有效數(shù)學課堂》,他通過多達42個實際課例講授了提高數(shù)學素質是實現(xiàn)有效課堂的前提及教師應具備的數(shù)學學科專業(yè)知識等內容,通過多達幾十個實例具體講解課堂的各環(huán)節(jié)設計。讓學生發(fā)現(xiàn)提出問題能力的培養(yǎng),作為教師首先就要對教材細琢磨,換個角度多想想,發(fā)現(xiàn)提出問題,才符合新形勢下對我們一線教師的要求!
觀摩了徐水二中許春英教師、北京九中三名教師、保定七中教師的教學,大家積極開展研討,研討中沒有虛假的恭維,只有真知灼見、真實流露;沒有形式上的大話、套話,只有深入思考后的針鋒相對?,F(xiàn)場研討,成為思維交鋒、不同地域多元教研文化交融的平臺,感覺收獲頗豐。
四、理解了教師成長,加速成長要引領教學
教育的發(fā)展,關鍵在教師的成長。教師是學校發(fā)展的基石,學校的軟實力來自己于擁有一只業(yè)務能力強,團結敬業(yè)的教師隊伍。對于個人而言,教師的成長不僅是時代的要求,更是適當現(xiàn)代教育的需要。此次培訓,很多專家與同仁重點談了教師如何規(guī)劃自己的成長之路,成為名師,成為教育家。
如保定學院韓素蘭教授的《求解中學教師科研難題》的報告中關于中學教師研究解疑的講解條理清晰,研究及書寫論文步驟詳細,并且每點都聯(lián)系了大量實際案例,實際操作性強,聽起來很清楚明白,頓時覺得課題寫論文也并不是一件難事。保定學院常務副院長朱紅素教授《適者生存,強者精彩---骨干教師成長為名師的歷程》從名師的界定、特征解讀、條件闡述、成長路徑等四個方面進行了講解。提出作為名師要具備或盡快培養(yǎng)較強的個人能力:精于教學、長于教研、善于寫作。 保定學院數(shù)學系主任周和月教授《幾何畫板與中學數(shù)學教學》學到了利用幾何畫板達到更好的教學要求實現(xiàn)教學目標。
五、結識了全省教學名師,促進兄弟學校聯(lián)系教學
此次培訓是一個很好的平臺,參加培訓的都是全省教學一線的精英、名師,對教育教學都是自己獨到的見解。所以此次培訓是一個非常好的相互學習的機會,平時大家一起學習共同交流。認識,在交流中提升;情感,在交流中深化。同時,通過此次機會,建立友誼的紐帶亦為樂事。創(chuàng)辦的qq群,成為了大家各在一方時交流的平臺。
六、積極發(fā)揮示范引領作用,促進學校的教育教學
集中培訓后,我主動將這次培訓的成果帶回單位,充分發(fā)揮骨干教師的作用,積極示范,大膽引領,帶領全校的數(shù)學教師投入到學校教育教學改革中。在教研組活動中,我積極解答教師教學中遇到的各種難題,引導互動和交流,促進了大家的`專業(yè)素質的成長。
參加省級骨干教師培訓是自己成長路上的一次重要經歷,我格外珍惜。培訓時積極認真,回到學校,我對自己嚴格要求,事事仔細,目的就是要將學校的年輕教師都培養(yǎng)出來。我相信,通過這次培訓,我在初中數(shù)學教學的大路上。
初中數(shù)學研究型教師培訓總結
參加完3月29日的考試,回想去年8月暑期開始的浦東新區(qū)數(shù)學教師專項培訓,感觸很深,初中數(shù)學教師培訓總結。首先,這對于我來說是一個極好的機會,作為一個年輕教師,除了第一年有過一次新教師培訓,這樣系統(tǒng)有針對性的培訓從沒有接觸過。我參加的是初級班培訓,主要是針對初中教師存在的一些常見的問題如:進一步提高教師的教學能力、師生溝通的技巧、怎樣寫教育案例、如何做教學反思等課程,也有提高數(shù)學教師專業(yè)發(fā)展的如:數(shù)學命題試卷分析、初中函數(shù)與分析、數(shù)學課堂教學設計、數(shù)學思想與方法論等課程。本次培訓共開展了21次活動,主要分了3個階段,每一個階段的都各有收獲,現(xiàn)總結如下:
第一階段是專家和骨干教師的講座和交流,之間聽了一些生動的報告。黃俊嶺老師的師生溝通技巧讓我知道了和學生交流方式的重要性,在平時的教育教學中,我總覺得和學生的溝通不是最有效,而通過黃俊嶺老師的講座,我了解到師生間不良的溝通方式,師生有效溝通的原則,教師課堂管理解決問題的策略,優(yōu)秀教師的幾條人格魅力等等。確實使我受益非淺。;顧志躍老師的進一步提高教師的教學能力讓我了解當前一名教師專業(yè)發(fā)展的各方面要求;惲敏霞老師的教學反思研究,讓我理解了教學反思就是教師自覺地把自己的課堂教學實踐,作為認識對象進行全面而深入的冷靜思考和總結,從而進入更優(yōu)化的教學狀態(tài),使學生得到更充分的發(fā)展,它是一種有益的思維活動和再學習活動。教師的成長應該是經驗加反思。教學反思可以激活教師的教學智慧,是我們教師成長的“催化劑”,是教師發(fā)展的重要基礎;是區(qū)別經驗型教師與學者型教師的主要指標之一。她從七個方面給我們講了如何做好教學反思,讓我們能更好的做好教學反思。這讓我深深體會到一個教師寫一輩子教案難以成為名師,但如果寫三年反思則有可能成為名師這句話。還有一節(jié)課老師列出了一系列的初中數(shù)學解題典型錯誤,很遺憾我不記得老師的名字,但這卻讓我在這些方面引起了重視。在進行教學時,預先了解學生的典型錯誤,能進行有針對性地教學,同時也能選擇更好地教學方法和手段進行教學,讓學生的這些典型錯誤能進行糾正,學生的錯誤率有所降低。這些可以使我們從預備初一等低年級就把握住中考的方向,還能在低年級時,給學生慢慢體會很多重要的數(shù)學方法和數(shù)學思想。最讓我印象深刻的是呂飛老師的幾何畫板,在這之前我基本只會簡單的運用這個軟件,而1天的課程讓我掌握了幾個關鍵的技術,真正感受數(shù)學多媒體運用的實用性和魅力之處,可惜時間太短,有機會真希望還能進一步的深入學習。幾位數(shù)學教研員或骨干教師的數(shù)學命題分析和試題講解讓我也感觸頗多。聽了各位專家的講座,我覺得在今后的教學生涯中,我們不應僅僅著眼于一些短期利益,而應把眼光放長遠一些;課堂教學中應重視數(shù)學思想方法的滲透,而不局限于單一解答方法的教學;不要盲目地迷信新課程標準,而應辨證地看待它??傊?,通過這些理論的學習實踐的指導使我深刻的領會到要成長為一名優(yōu)秀的教師所要付出的努力以及必經之路。
第二階段是聽課評課,對于初級班的學員,我們20位老師分成一組,每人上交一張教學光盤,無論中青年教師,大家都非常認真的觀看,其中好幾位老師的課讓人眼前一亮。課后的交流中大家暢所欲言,各抒己見,教學中經歷的困惑、感受產生了許多共鳴。其實教師之間經常互相聽課和評課是教師提高自身教學水平的一條重要途徑。作為一名年輕教師,能夠經常聽聽其他老師、特別是優(yōu)秀教師的課,有利于學習他們良好的教學態(tài)度、教學作風和教學經驗。在這次的活動中,我們就有了很多這樣的機會。最后回到實際來評價組內每一位教師的課,來提高自己的評課水平,加上導師的點評,起到了畫龍點睛的作用。
第三階段是培訓評價,最重要的當然是3月29日剛結束的考核,在復習過程中,又一次把第一階段的講座知識經過了歸納和梳理,我感受到雖然是條件性性知識是開卷考試,但整理材料的過程中我已經不知不覺了解了許多知識,工作總結《初中數(shù)學教師培訓總結》。而本體性知識的考核也讓我深刻體會到提升基本功的重要性。作為一名年輕教師,我目前最高只帶過初一年級,這次本體性知識題目我做起來感到非常的陌生和不適應,讓我深深體會到教師解題能力的重要性,要教給給學生一碗水老師必須要有一桶水甚至更多,而這對于我未來的發(fā)展是非常重要的。
在幾年的教學中有許多困惑,說實話,這次培訓許多問題還沒有得到根本上的解決,但卻給了我許多啟示。培訓結束了,但學習的道路是永遠沒有止境的。真心感謝上級能給我這一個寶貴的學習機會,使我認識了許多其他兄弟學校的老師和名師,使我從中學到了很多理論和實際知識,希望自己能得到更多老師的幫助。
第10篇 初中數(shù)學線段的垂直平分線及坐標知識點總結 1850字
初中數(shù)學線段的垂直平分線及坐標知識點總結
各位熱愛數(shù)學的初中同學們做好筆記啦,今天的小編為大家?guī)淼氖浅踔袛?shù)學線段的垂直平分線知識點總結,有需要的同學過來看看。
初中數(shù)學線段的垂直平分線
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理1:關于某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
以上就是小編為大家整合的初中數(shù)學知識點大全,同學們都能熟記于心、靈活運用了嗎。接下來還有更多更全的初中數(shù)學知識點盡在。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的.一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
第11篇 初中數(shù)學培優(yōu)輔差工作總結 2350字
初中數(shù)學培優(yōu)輔差工作總結
從我班的基本情況來看,學生的數(shù)學總體來說還是不錯的,可是一部分學生卻在數(shù)學學習上遇到了很大的困難。因此,我覺得有必要在“培優(yōu)補差”教育上做出成績來,把“培優(yōu)補差”教育的效果落到實處。針對我班學生學習活動中的一些具體表現(xiàn),如不愛學習、學習習慣不好以及學習過程常出現(xiàn)錯誤等情況,我對學生采取了分層分類教學和推行個性化教育為主的“培優(yōu)補差”方法,并取得了一定的效果。
一、實施分層分類教學
所謂分層分類教學,就是根據(jù)學生的學習程度、學習習慣的差異,在各種教育教學活動中區(qū)別對待、因人施教,以滿足不同教育對象的個體需求,促進全體學生的協(xié)調健康發(fā)展。它是在教育教學過程中做到目標分層提要求、訓練分層搞輔導、檢測分層定標準,使不同智力、不同個性的學生在自己原有的基礎上,在各個方面一步一步地滾動式向前發(fā)展,不斷從小成功到大成功、一方面成功到多方面成功、個別成功向全面成功邁進的,達到教學成功的一種手段。在實施分層分類教學實踐中,我的具體做法如下:
1、根據(jù)我班學生數(shù)學學科的成績,將學生按照a、b、c三個層次進行分組,不同組在學習進度、學習班難度、考核要求等各方面采用不同的標準。并且,對分組的情況實行動態(tài)管理,如果經過考核c組的學生達到b組學生的水平,就可以進入上一個組;反之,如果學生成績嚴重倒退,則有可能降至下一個組。
2、另外還有一些具體措施體現(xiàn)分層教學:在課余輔導中對尖子生實行“導師制”,對“后進生”實行“會診制”,發(fā)現(xiàn)不足之處,則有針對性地采取不同的措施,如:不會簡算的則加強簡算;對數(shù)學公式運用上有問題的則加強對公式的理解及運用;針對不同的題型采取了不同的方法。
二、推行個性化教育
由于每個人的先天素質、家庭條件、文化基礎、成長環(huán)境和社會背景等各不相同,所以每個學生也都有其獨一無二的個性。我班學生多數(shù)學生的父母都是以做生意為主,來自不同的地方,學生間的差異也是十分明顯,在教學中我也能夠從學生的個性出發(fā)來考慮學生的發(fā)展,培養(yǎng)學生的獨立人格,發(fā)展學生的個性才能,使學生能更自覺、更充分、更主動地全面提高自身的整體素質。
總的來說,在“培優(yōu)補差”的工作中,我雖然取得了一定的成績,但是,我班相當部分的學生,基礎還較差,底子還比較薄。在“培優(yōu)補差”的工作中,我還將繼續(xù)加倍努力,爭取在以后的教學中能有更大的進步。
初中數(shù)學培優(yōu)輔差工作總結
教育教學工作是學校的主要工作,是學校的生命,而這一工作是由各科的教學工作組成的。因此,科組建設的成功與否直接影響到學校的.教育教學質量。所以,優(yōu)秀科組的建設是我們小學一項常抓不懈的工作,并且取得了相當?shù)某尚А?/p>
一、抓教學常規(guī),提高教學質量
1、健全組織機構,明確職責分工
我校數(shù)學科有完善的組織機構(教導主任――科組長――各任課老師),有明確的職責分工,如科組長的主要職責是:期初制定學科的教學工作計劃、教研計劃,期末寫教學、教研工作總結,質量分析;組織科組教師學習有關理論,協(xié)助教導處開展教研活動,檢查教師備課,組織學生開展學科活動等。學校還定期開展科組活動,檢查各時期的工作,提出新的要求,幫助他們解決工作中遇到的難題。
2、抓教學管理、抓常規(guī)管理。
本學期,教研組加強了課堂教學常規(guī)管理,并配合教導處繼續(xù)強化教學五認真的督查評估,使備課、上課、質量檢測、作業(yè)批改、輔導學生、組織課外活動的各個環(huán)節(jié)都符合規(guī)范化的教學要求。我們要求教師期初要制定教學計劃,輔導學習困難生計劃;科組長、要制定教研計劃;期中,要進行質量分析;期末,各班科要進行質量分析;嚴格執(zhí)行課程計劃,各教師從素質教育的高度把安排到的課上足、上好;文化知識考核:平時組內單元把關、每次檢測各年級都能認真做好質量分析;一學期來教研組共檢查了備課本2次,教師們都能按要求備足、備好課,青年教師大都能寫好詳案,也較工整;并能及時寫好教后反思;一學期中全組教師每人聽課10節(jié)以上,并及時寫好聽課反思或隨感。科組長、備課組長要寫出教學教研工作總結,各老師要上交教學論文、教學反思。
3、備課管理。我們要求教師在備課內容的深入上下功夫。而且,確立教學目標,作出重難點的處理,教法的選擇,作業(yè)的設計等??平M長、教導處還每學期檢查教師備課兩次,每次都有記錄,有總結。
4、作業(yè)管理。由于學校每年都有不少的插班生,而且每個年級的知識,要求都不同,所以每個學期的開始,學校都召開科組長會議,要求他們要結合學生實際和教學的需要,綜合同級科教師的意見,定出作業(yè)的格式,作業(yè)本的名稱,用什么作業(yè)本等。學校每學期檢查學生作業(yè)三次,對教師在批改作業(yè)上好的做法及時表揚,不足的地方及時糾正。
5、學生管理。數(shù)學科雖然學科思想教育性不強,但數(shù)學科的老師仍然把學生的思想教育滲透到學科教學當中。而且每學期初都制定好《培優(yōu)補差》計劃,按計劃做好學習困難生的輔導及優(yōu)生的培訓工作,成績確有成效。由于抓了教學常規(guī),使學校的數(shù)學教學工作有序地進行,教學質量穩(wěn)步提高。
二、加大教科研力度,提高教師素質
1、加強理論培訓,提高理論素養(yǎng)
我們充分利用業(yè)務學習、科組活動、備課組活動時間及課余時間,組織教師學習;研究新教材;學習有關課堂教學評價的理論;學習主體性實驗研究的有關理論。在學習中我們要求教師做到“四個結合”:理論學習和理論摘抄相結合,理論學習和心得交流相結合,理論學習和觀摩、點評優(yōu)質課相結合,理論學習和教師課堂教學實際相結合。
2、辛勤耕耘結出豐碩果
綜上所述,我校數(shù)學科組在學校領導的正確的領導下切實取得了一定的成績。一份耕耘,一份收獲,良好的成績將為我們今后工作帶來更大的動力。不過,我們也應該清醒地認識到工作中存在的不足之處,教學工作苦樂相伴,我們將一如既往勤勉、務實地工作,我們將本著“勤學、善思、實干”的準則,一如既往,再接再厲,把工作搞得更好。
第12篇 初中數(shù)學知識點總結:方差 700字
初中數(shù)學知識點總結:方差
初中數(shù)學知識點總結之方差
接著平均數(shù)的內容,下面的小編為大家整合的是初中數(shù)學知識點大全之方差。
上述是的小編為大家整合的初中數(shù)學知識點大全之方差,相信各位同學已經熟知要領了吧。想要了解更多更全的初中數(shù)學知識就來關注吧。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的`講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
第13篇 初中數(shù)學整式運算知識點的總結 450字
初中數(shù)學《整式運算》知識點的總結
1.同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關,與字母排列的順序也無關。
2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的.系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變。
3.整式的加減:有括號的先算括號里面的,然后再合并同類項。
4.冪的運算:
5.整式的乘法:
1)單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。
2)單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。
3)多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
6.整式的除法
1)單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
2)多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。
第14篇 蘇科版初中數(shù)學公式定理總結 400字
81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
第15篇 初中數(shù)學期末總結學生 2900字
初中數(shù)學期末總結學生
當我還徜徉在圣誕節(jié)浪漫的氛圍中,當我的耳邊還留有“when christmas come to the town” 美妙旋律的余音時,20**年已乘著極地特快列車呼嘯而去,20**年也伴隨著新年鐘聲飄然而至。細細回想20**年,對我來說真是飛躍的一年。在這一年里,無論是學習方法、態(tài)度還是紀律都比小學更上了一層樓。下面,我就這2點簡單的總結一下。
(一) 學習
在這個學期里,老師為我們的學習付出了許多心血,我們也為自己的學習灑下了辛勤的汗水??偨Y這個學期的學習,主要有以下幾個方面:
第一,學習態(tài)度比較端正。能夠做到上課認真聽講,不與同學交頭接耳,不做小動作,自覺遵守課堂紀律;對老師布置的作業(yè),能夠認真完成;對不懂的問題,主動和同學商量,或者向老師請教。
第二,改進了學習方法。中學的學習與小學有許多不同。小學時代我們就像老師的仆人,被老師催著趕著向前走。而初中更注重自主學習,老師講的不再滿足我們的需要。于是,我給自己訂了一個學習計劃:
(1)堅持做課外習題。
(2)上課要積極發(fā)言。對于沒有聽懂的問題,要敢于舉手提問。
(3)每天的家庭作業(yè),做完后先讓家長檢查一遍,把做錯了的和不會做的,讓家長講一講。把以前做錯了的題目,經常拿出來看一看,復習復習。
經過自己的不懈努力,這學期的各門功課,都取得了較好的成績。
第一次月考語文103.5分,數(shù)學91分,英語97分。位班級第6名,年級第39名。期中考試語文93分,數(shù)學93分,英語96分。位班級第1名,年級第8名。除此之外,還在全國中學生英語競賽中以136分的成績獲一等獎,位大連市第10名,年級第1名。
取得了這些成績,只代表過去。我相信,只要我不懈努力,在20**年我會取得更優(yōu)異的成績!
(二) 紀律
在紀律方面,基本可以做到:尊重教師,同學之間可以真誠相待;能遵守學校各項紀律,遵守公共秩序,遵守社會公德;不遲到、不早退、不曠課;上學穿校服;舉止文明; 有良好的衛(wèi)生習慣,不亂扔廢棄物。
老師說過,紀律是學習的保證。沒有紀律,何談學習?在下學期,我會再接再厲,爭取在紀律方面做得更好。
著名作家張潔在散文《我的四季》中說道:“找到了水源,才發(fā)現(xiàn)沒有帶盛水的容器?!痹谏钪校覀円渤3]有充分的準備便急急上路。經歷了艱辛卻遭遇失敗,這樣的經驗讓我們痛心,并要付出加倍的代價來記取。
讓我們以今天的榮譽為起點,以今天的不足為,揚起理想的風帆,在20**年這片遼闊無垠的大海中向成功的港灣遠航!
初中數(shù)學期末總結學生
時光像水中的倒影,一晃一學年就過去了。昨日那埋怨時間過的太慢的情素似乎還游移在腦際,而今大二的生活正在向我們走來,驀然回首,感慨頗多。剛邁入大學的時候對一切似乎都充滿新鮮感,于是到處躍躍欲試,結果碰壁較多.不過'吃一塹,長一智',大一學年我除了努力完成自己的學習目標,也利用各種活動豐富自己的生活,擺脫現(xiàn)在大學生最流行的'郁悶'日子?,F(xiàn)將我上一學年的總結如下:
一、在學習。學習是學生的基本,我知道一個受社會肯定的優(yōu)秀大學生,除了有個性有特長外,最起碼的就是要有知識文化的功底,所以,我至始至終都把學習擺在第一位這個學期開的課不多,正因為這樣,只有珍惜每一節(jié)文化課,堅決不遲到不早退不曠課,才對得住自己的大學生涯!
在做作業(yè)上,我每次都是自己的作業(yè)就自己做,不抄襲不作弊,同時我還堅持每個月分別寫英語和漢語作文,希望以此可以提高自己的寫作能力。在課余時間,我還充分利用學校的圖書館資源,抓緊時間閱讀各方面的書本知識,以求提高自己的知識面,拓寬自己思考問題的角度,從而多方面的考慮問題,避免片面看問題,養(yǎng)成不好的思考習慣。還有要說的一點就是選修課,這個學期我選修了綜合會計和數(shù)據(jù)庫的應用,前一門課程屬于經濟方面的內容,通過綜合會計,我了解了一個公司記賬的最基本的方法,對我了解和認識不同公司的經濟實力奠定了基礎。我想這對我以后出來工作是有一定幫助的,畢竟在現(xiàn)代這個社會,掌握一定的經濟知識是很必要的,會計對于各個行業(yè)都是有用的。即使我以后不從事這個行業(yè),我相信我都可以從這里得到一定的啟發(fā)。其次就是數(shù)據(jù)庫,這次的學習也是我比較早的了解了數(shù)據(jù)庫的不同凡響,也更激起了我對計算機的興趣!畢竟現(xiàn)在社會計算機遍及各個領域,學習計算機對我將來的工作用處也是很大的。在學習上,我認為還有一樣東西是非常重要的,那就是學習態(tài)度!我以前對學習的態(tài)度不是很端正,常常都是“得過且過”,不過現(xiàn)在好多了,我開始養(yǎng)成一種謙虛、勤問的學習態(tài)度。學習上的東西來不了弄虛作假,是不懂就不懂,絕不能不懂裝懂!孔夫子說過“三人行,必有我?guī)煛保蚁氲览砭驮谶@里。不懂就要問———這對我以后的學習也是有很大幫助的'!
二、在生活上,我基本上都可以和同學們友好相處,和睦共處,互幫互愛,自己的事情自己做,形成獨立自理自立的良好品德。宿舍是一個大集體,八個人生活在同一個空間里面,但是各自的生活習性都不相,這就需要大家互相理解和遷就,只有這樣才能和平相處,為我們的學習創(chuàng)造一個良好的學習和休息環(huán)境。大學就相當于一個小型的社會,作為一個步入社會的緩沖,我們可以從中學到好多的東西。大學里時間比高中充足多了,這樣可以利用剩余時間在外面打工,尤其是五一,十一,我通過打工也知道了許多工作中的細節(jié)和與老板、同事間的處事的細節(jié)。最重要的是通過打工,我認識到了在與陌生人相處時,平等是第一位的,在與人交往中要將一些身份、地位去除-——這樣既有利于交往,又是尊重別人。
三、在娛樂上,我上學年積極參加各方組織的各項活動。比如:院系、班級組織的秋游、春游,還有認識山東古老建筑文化的游覽學習,班歌比賽,班級內乒乓球比賽;學校里征集贊美學校、大學、大學生活等文章活動;參加社會實踐活動——黃河浮橋車流量統(tǒng)計等等。通過參加有些活動,我的眼界開闊了許多,認識到了許多東西;而有些,則使我更加了解、熱愛我們的學校、班級,加強了集體觀念!
四、在其他方面,上一學年,我積極參加適宜自己的社團——英語協(xié)會、青協(xié)、交友協(xié)會。同時大學里豐富的講座也早已成了我的必修課,通過聽講座,我認識到了許多不同的東西,比如;現(xiàn)在中國的形勢、求職面試技巧、英語考試技巧等。我還積極參加學校里各個組織的競選活動。在工作上,我還積極完成年級學生會里交給的各項任務,處理好各項事務,其中包含我們學習部為文藝部寫的小品稿。通過在年級學生會里工作,也是我學會了怎樣處理各個方面的關系,提高了素質。
在上一學年里,我學到了太多的東西。這是我在以后生活、工作中所必需的。我感謝大學里相對這么寬松的自由學習環(huán)境,給了我這么多的自由伸展的空間。盡管如此,我在大一學年里還是存在許多不足,其中不按作息行動、學習最為嚴重,在這一學年我要嚴格自己,重新調整好自己的生物鐘。同時我還要注意多鍛煉身體,身體是本錢。只有兼?zhèn)鋬烧?,才能有更高的學習效率,從而騰出更多的時間干更多的事情,才能消除大一時的“心有余力而力不足”!
總結回顧昨天,我百感交集;面對今天,我信心百倍;展望明天,我任重道遠!我想:“既然上帝讓我們都能自己掌握自己的命運,那么我就一定要并且也能掌握好我的命運,我的大學將會因為我的不斷回顧和展望而更加無怨無悔!